LECTURE#4

CAD/CAM COURSE

TOPIC OF DISCUSSION

GEOMETRIC MODELING

WHAT IS A GEOMETRIC MODEL

- CAD attempts to eliminate the need of developing a prototype for testing and optimizing the design
- CAD evaluates a design using a model with geometric parameters created on computer
- Such a model is called Geometric Model
- Various types of analysis can be done interactively on this virtual model using different application software

NEED OF A GEO MODEL

- In a traditional product design cycle, a concept of designer's mind travels to the manufacturing engineer to produce a part
- However this essentially become a multi-stage process where task of manufacuring engineers starts when designer work is over
- But in a typical CAD/CAM environment, a virtual model which is called Geometric Model is to be analysed by all the departments during product design cycle & modified according to their predefined rights

NEED OF A GEO MODEL

- Designers generate detailed specifications for the parts and assemblies to be produced
- These specifications consist primarily of geometrical information about the parts/ assemblies
- The proposed models/ designs are analyzed for compliance with the specifications under simulated conditions, and are modified if necessary
- This is done by Computer aided optimization technique
- These analyzed models with part specifications are passed on to manufacturing,
 where decisions are made about the processes to be used
- All the processes along the product development cycle use the geometrical model's information, generated in the modeling or design stage

Modeling or Design (CAD)

- Model must be easy to generate
- Facilitate minimum calculations at the user level
- ➤ Encompass different options of generating the model with advanced and easy modifying tools and techniques
- Better graphics to visualize the design graphically

Analysis & Optimization (CAE)

- Mass property calculation
- Volumetric/area calculations
- Stress Analysis/ CFD Analysis
- Assembly mating
- Motion analysis of mechanisms
- Tolerance check analysis

- Computer Aided Desing & Drafting (CADD)
 - Generating production drawings
 - Visualizing information and drawings
 - Using hidden lines
 - Hatched or shaded images
 - Generating the dimensions, production symbol and etc.

Computer Aided Manufacturing (CAM)

- Process planning & scheduling
- Part programming
- Robot programming
- Actual production control

- Bill of Material (BOM) Generation
 - Material requirement
- Inspection & Quality Control
 - Inspection machines/ robot inspection
 - Comparison of design and part specification

- Basically geometric models can be broadly classified into following three types based on its coordinates
 - Two Dimensional Model
 - ❖ 2 ½ Dimensional Model
 - 3 Dimensional Model

2 Dimensional Model

Two dimensional Model is basically a model which is made in typical 2D coordinates

• 2 ½ Dimensional Model

- ≥ 2 ½ dimensional model is 1 step a head than 2D model.
- It is basically a 2D model with an extruded depth without any detail

3 Dimensional Model

3D models are those models which have detailed features

on its depth

Three are basically three distinct ways of representing a 3D model

- Wire Frame Model
- Surface Model
- Solid Modeling

Wire Frame Model

- ➤ Wire frame models are created using basic entities with their attributes
- These entities are basic building blocks and attributes defines the properties of the entities required to completely define that entity
- The entities that are combined to generate the model can be catagorized as analytical curves like lines, cricle, ellipse, hyperbola, parabola etc.

Wire Frame Model	Basic Entities	Edge Type
2 3 7 5 8	8 Vertices (1, 2, 3, 4, 5, 6, 7, 8)	12 Linear Edges
	12 Edges (1-2, 2-3, 3-4, 4-1, 1-5, 2-6, 3-7, 4-8, 5-6, 6-7, 7-8, 8-5)	

Surface Models

- Surface models are also created either by using analytical methods (plane surface, ruled surface, surface of revolution and tabulated cyclinder etc.) or the sythetic surfaces (Bicubic, B-Spline, Coons patch and Gordon surface).
- ➤ Same cube may be represented as a surface model with 06 faces instead of 12 edges

Wire Frame Model	Basic Entities	Face Type
5 8 7	8 Vertices (1, 2, 3, 4, 5, 6, 7, 8) 06 Faces	6 Plane Surfaces

Solid Modeling

- Reprentations helps to create and modify the models of three dimensional solid objects
- There are number of representation techniques which are used for solid modeling like generating sweeps
- A solid may be generated by using basic 3-D building blocks, which are called primitives
- e.g. Block is a primitive whose attributes are length, height and width
- These different primitives are combined to form a real model
- The basic primitives used are block, cylinder, sphere, wedge, and cone etc.

- Certain modeling techniques are as follows
 - Primitive Based Modeling
 - Variational Modeling
 - Feature Based Modeling
 - Pure Primitive Modeling
 - Constraint Driven Modeling
 - Design Table Based Modeling

- Primitive Based Modeling
- ➤ A primitive is a standard solid element like cube, cylinder, sphere and cone etc.
- The basic primitives are combined with boolean algebra (union, subtraction, Intersection etc.)

Variational Modeling

- The variational approach couches the design in a mathematical model such that whenever the designer makes a change, the package recalculates the entire model
- This capability makes a flexible system and it is most useful in early design stages where relationships between geometric constructions can change drastically

Feature Based Modeling

- Feature based modeling has rapidly become the preferred method of constructing models among engineers
- In feature based modeling, models are constructed from geometric features such as holes, shells, bends, drafts, rounds rather than using primitives
- The major advantage is that they provide dimensions that correctly define how the feature behaves when dimension change

Pure Primitive Modeling

- Components like fasteners (nuts and bolts, screws, holes of various kinds) and jig and fixtures etc. Are made for a range of dimensions
- Knowing the few important dimensions of the model, other dimensions can be calculated using empirical relationships

Constraint Driven Modeling

- In constraint driven modeling the modeling is done by imposing certain constraints on the model entities through equations
- The design intent is defined through equations or relationships between existing entities e.g. The two circles can be constrained using a concentric constraint

- Design Table Based Modeling
- This design technique can assist in creating number of design alternatives with dimensional change of approximate similar shapes

